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A time-periodic Hamiltonian system is considered. It is assumed that the system has an equilibrium position in whose 
neighbourhood the Hamiltonian is analytic. A constructive algorithm is proposed for computing the coefficients of the normal 
form of the Hamiltonian. The algorithm is based on a special procedure for the construction and analysis of a symplectic map 
of the neighbourhood of the equilibrium position onto itself. The exposition is carried out using as an example a system with 
two degrees of freedom. The coefficients of the normal form are expressed in terms of the coefficients of the generating function 
of the map. The algorithm is used to solve the problem of the stability of the relative equilibrium of a Kovalevskaya top with a 
vertically oscillating suspension point. © 2005 Elsevier Ltd. All rights reserved. 

In many stability problems for the motion and non-linear oscillations of mechanical systems, it is 
necessary to investigate the behaviour of trajectories of a canonical system of differential equations in 
the neighbourhood of a point of equilibrium which coincides with the origin of the phase space. In such 
cases the Hamiltonian is frequently periodic in time or not explicitly time-dependent. 

One of the main technical devices for such investigation is Poincar6's method of normal forms, which 
has been extensively developed and used in a large variety of non-linear problems [1-3]. The essence 
of the method is to use a canonical transformation to bring the Hamiltonian to a certain simpler (normal) 
form. The corresponding canonical system of differential equations is considerable simplified, signifi- 
cantly facilitating its investigation. 

If the Hamiltonian is not explicitly time-dependent, its normal form may be obtained by algebraic 
operations applied to the coefficients of the series expansion of the Hamiltonian in the neighbourhood 
of the equilibrium point [1, 2, 4]. For example, the conditions for the stability and instability of the 
equilibrium position may be expressed explicitly in terms of the coefficients of the initial Hamiltonian [4]. 

However, if the Hamiltonian is explicitly time-dependent, the derivation of the normal form involves 
a rather complicated procedure. The first stage involves the construction of a time-periodic linear canon- 
ical transformation to normalize the part of the Hamiltonian that is quadratic in the phase variables. 
Then the terms of the third and higher powers in the series expansion of the Hamiltonian must be 
normalized. The non-linear canonical transformation is close to the identity and is defined by series 
with time-periodic coefficients, which are constructed using the Birkhoff transformation [5] or its modern 
modifications, such as the Deprit-Hori transformation [6]. The construction of these series is extremely 
laborious. The technical aspect of the normalization procedure may be simplified considerably by using 
the method of point mappings (see [4, Chap. 6]). 

In the algorithm proposed here, as in an earlier version [4], what is normalized is not the time-periodic 
Hamiltonian itself, but the generating function of a certain map, generated by the canonical system of 
differential equations corresponding to the Hamiltonian, over a period. It is then possible to reproduce 
the normal form of the Hamiltonian on the basis of the normal form of the generating function. 

As before [4], the construction of the map is based on solving a Hamilton-Jacobi equation in the 
neighbourhood of the equilibrium point in series form. However, unlike the algorithm in [4], there is 
no need for preliminary normalization of the quadratic part of the original Hamiltonian. 

tPrikl. Mat. Mekh. Vol. 69, No. 3, pp. 355-371, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
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The algorithm is very simple - not much more complicated than the algorithm for the normalization 
of an autonomous Hamiltonian system. True, the algorithm must, as a rule, be run using computers. 
However, the coefficients of the series expansion of the generating function of the map are obtained 
by integrating a system of ordinary differential equations only once over the period; that system is very 
easy to derive from the initial Hamiltonian, while the initial conditions are known in advance. As regards 
the coefficients of the normal form of the Hamiltonian, they are explicitly expressed in terms of the 
coefficients of the series expansion of the generating function of the map. 

1. T H E  A L G O R I T H M  F O R  T H E  N O R M A L I Z A T I O N  OF A P E R I O D I C  
H A M I L T O N I A N  

Construction of  the map. Consider a system with two degrees of freedom whose motion is described 
by canonical equations with a Hamiltonian H(ql, q2,Pl,P2, t). We shall assume that H is analytic in the 
neighbourhood of the point qj = pj = 0 (j = 1, 2), which corresponds to an equilibrium point of the 
system, and that it admits of a series expansion 

H = H 2 + H 3 + H 4 + . . .  (1.1) 

where Hk is a form of degrees k in ql, q2, Pl andp2 whose coefficients are 2~-periodic functions of t. 
Let q(0) andp!0) (j = 1, 2) be the initial values of the variables qi andpj, and q(a) andp!1) are their 

J J 1 1 J J 
values at t = 2re If q(°) andp(°) are sufficiently small, the quantities q ! ) andp( ) will be analytic functions 

• J 0 J ] J 
of q~0), q(20),p~0) andp~ ), defining a map T of the neighbourhood of the equilibrium position onto itself. 
We will now outline an algorithm for constructing this map. 

Let X(t) be the fundamental matrix of solutions of the linearized equations of motion• Its elements 
satisfy the equations 

d x j s  _ OH z d x j +  2, s _ 3 H 2  

dt OXj + 2,, dt Oxj~ 

j = 1,2; s = 1 ,2 ,3 ,4  

H2 = H 2 ( X l s  ' X2s, X3s, X4s, t ) ;  
(1.2) 

and the initial conditions 

X ( 0 )  = E 4 (1.3) 

where E 4 is the 4 x 4 identity matrix. 
Instead of the variables qj andpj  (j = 1, 2), we will introduce new canonical conjugate variables uj 

and vj by the formula 

q !  

q2 

Pl 

P2 

X(O ul 
_= bt2 

l) I 

D 2 

(1.4) 

This change of variables is a canonical univalent transformation [7]. The series expansion of the new 
Hamiltonian G(Ul, u2, ~ ,  v2, t) contains no quadratic terms in ul, u2, Vl and %: 

G = G 3 + G 4 +. . .  (1.5) 

where G~ is the forma H~ of (1.1) in which the highest-order variables expressed in terms of the new 
ones by formula (1.4). 

The change of variables (1.4) reduces the construction of the map T to finding the map ~ja (°),~_jo (0) __+ 

u~l), u}l) over a period, i.e. f o r t  varying from 0 to 2re. In this situation we have q}0) = u!0)j '~'J"(°) = t)}0), 

and 
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i q(l l) 

(l) 
I q2 

ip(11) 

(1) 
P2 

= x(2 ) 

. I  1) 

u~ l) 

(1) 
o 1 

(1) 
1) 2 

(1.6) 

Since expansion (1.5) contains no second-order terms, the map q}0), p}0) +/2j(.1), 1)}1)is close to an 
identity. It is defined implicitly by the equalities 

co) OS . (1) OS 
qj = .£-~), oj - ~-77); j = 1, 2 

opj  Oblj 

(t) (o) (1) (o) 
S3(U~l u, uz , t'l , P2 ) pC o), S Ul Pl -t- bt 2 P2 + (1) _(0) (0), -I- S4(u(11), u~ 1), (0)~ 

= P2 ~+""  

(1.7) 

where S is the value at t = 2n of the function 

_(0) (1, (o) (t) CO) + (:I)3(uC11), u(,), p(lO), p~O), t) + (I)4(u(11), u~ 1), p(10), P2 ' t )  + ( 1 . 8 )  (1~ = U 1 Pl + U2 P2 2 "- 

which satisfies the Hamilton-Jacobi equation 

~ t" (1) ) - -  + , c l )  
3t -, ( , ) ,  0) , t  =0;  ~k(u, ,u~'),p(,°),p~°),O)=-O, k = 3,4 . . . .  

ou 1 ou 2 
(1.9) 

Substituting expansions (1.5) and (1.8) into the left-hand side of Eq. (1.9) and equating terms of powers 
3, 4, etc. to zero, we obtain equations for the forms ~3, q~4, ... " 

Orb 3 

Ot 
0~) 4 Z OG 3 0(I3 3 ~ ,, (1) (1) (0) (0) 

-- --63' ~ "= - -64- -  Z ~_~(O)~u(.1) . . . .  ; Gk = Uk[Ul 'U2 ,P l  'P2 , t )  (1.10) 
j= lOPj  3 j 

Equating the coefficients of like powers of  u~ 1), U(1)2 '~'1"(0) and /'2n(°) on the left and right of these equations, 
we obtain a system of ordinary differential equations for the coefficients of the forms q53, ~4 . . . . .  By 
the identities of (1.9), these coefficients vanish at t -- 0. The equations for the coefficients must be 
considered together with the system of equations (1.2), (1.3), defining the elements of the fundamental 
matrix X(t), which occur in the substitution (1.4) and therefore also in the expressions for the functions 
G3, G4, . . . .  Integration of the system thus obtained from t = 0 to t = 2r~ yields the functions $3, $4 . . . .  , 
and hence also, (1.6) and (1.7), the explicit form of the map T: 

qCll) ql 

q~l) q2 = X ( 2 x )  p?) 
(I) P2 

P2 

(0) 0S3 ,~2 ~2S3 053 0S 4 
Oj "~ qj -~ (0) + 2., -, ~ (0)~--~) - 0pC0 ) )  --F 0 4 

opj l= I°Pj oqt opt 

(0) OS3 L 02S3 OS 3 OS 4 
= PJ + aq(°---51 - 22 -, co). (o l . - i5)  + + o4  

l= 1 oqj aqt aPl oqj 

(1.11) 

S~ Sk(qCl0), (0) q2 ,P]0), (0)., = P2 1' J = 1 , 2 ;  k = 3,4 

where 0 4 denotes terms of degree greater than 3 in 't1"~(°),"/2 r'(0),/`l n(0) andp~ °). 
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Linear normalization o f  the map (1.11). The characteristic equation of the matrix X(21t) of the linearized 
map (1.11) is reciprocal and has the form 

4 3 2 
e - a l e  + a 2 ~  - a l e +  1 = 0 (1.12) 

where a I is the trace of the matrix X(2n) and a2 is the sum of all its principal minors of the second 
order. We shall consider only the case in which the parameters of the system lie in the interior of the 
stable domain of the equilibrium position qj = pj = 0 (j = 1, 2) in the first approximation. In the plane 
of the coefficients a I and a2 this domain is defined by the following system of inequalities [8] 

- 2 < a  2 < 6 ,  4(a  2 - 2 )  2 < a 1 < (a 2 + 2)2/4 0.13) 

When these inequalities hold, the roots of Eq. (1.12) are complex conjugates, distinct and of absolute 
value 1. The characteristic indices +_i£j (j = 1, 2) will be pure imaginary. 

In this section we will use a change of variables to bring the linear part of the map (1.11) to real 
normal form. This transformation may be constructed as follows. Assign (arbitrary) signs to the quantities 
)~j (j = 1, 2) and let ej denote an eigenvector of the matrix X(2r 0 corresponding to the root (multiplier) 
~j = e i2nkj of Eq. (1.12). For the real and imaginary parts ry and sy of the vector ej we have the following 
system of equations 

X(2rt)rj = cos2n)~jrj-  sin2rc~,jsj, X(2rt)sj = cos2rO~jsj + sin2rt)~jrj (1.14) 

Let r j*, s 7 be some non-trivial solution of system (1.14). Letgj denote the scalar product of the vectors 
r7 and Is) ~, that is, 

gj = ( r* , I s*) ,  I = 0 E 2 
- E  2 0 

where E2 is the 2 x 2 identity matrix. It can be shown [4] that the quantities gj (j = 1, 2) do not vanish. 
We introduce the notation 

8j = signgj, (yj = 6j~,j, cj = [gj[-1/2, j = 1, 2 (1.15) 

and we let N denote the 4 x 4 matrix whose jth and (j + 2)th columns are cjSjq and qs ;  (j = 1, 2), 
respectively. 

It can be verified directly that the matrix N is symplectic and transforms the matrix X(2rc) to real 
normal form G: 

N'IN = I, NqX(2~)N = G 

fl // 
G =  Gc G~]], G~=I [  c°s2/~(Yl 0 , G s =  sin2/t~ l 0 

-Gs Gc I/ I/ 0 cos21t(y 2 0 sin2r~(y 2 

The matrix G defines two independent rotations through angles 2rcch and 27t(y 2 . 
Instead ofqj andpj (j = 1, 2) in the map (1.11) we define new variables Qj andPj (j = 1, 2) via the 

univalent canonical transformation defined by the matrix N 

ql 

q2 

Pl 

P2 

= N  Q2 
P1 

P2 

(1.16) 
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Omitting the intermediate steps, we write the expression for the map (1.11) in the new variables 

Q(11) 

p{1} 

p~l) 

= G  

1 

02 

~'2 

(1.17) 

Oj O(0) c)F3 ~1 02F3 OF3 0F4 
= _ _ _  + c)p(O)~)r~(o)~)p(O) - -  + 0 4 ~J op~O) l = j ~l I Op(jO) 

(0) OF3 2 ~)2F3 ~)F3 0F 4 
1£}j = P j ..{-. Q SO-------T) - l~_ l O Q ( ~ Q  (lO ) ~lO) [- ----~.~ -.{- 04 ;. j = 1,2 

aOj 

We have used the notation 

F 3 = S~ (1.18) 

1 21~ F (OS] ~2 " (OS~)2] 
+ j~=l~ + //2jn4j ) ~(0) - F4 = S~ ~ (//1,2+j//3,2+j "2,2+j//g, 2+j)(0Tj{.o) ) +(//lj//3j + ~Opj J ~ 

//24//4j)" {0) (0i -- E (//13//3j n2,n4j)aQ(lO)apSO , (r/14//3j + aQ2 aej j 
j = l  

as " as ' as;" as " 
+ (//13/734 +//23//44) ~'-~'~) ~--~-~) + (//11//32 + n21n42) (0) (0) 

~Q1 ~Q2 bP1 ~P2 
(1.19) 

where nrs are the elements of the matrix N and S~ (k = 3, 4) are the forms Sk from (1.11), with q}0) and 
p(0) expressed in terms of Q(0) and p(0) in accordance with the transformation (116) J . . J . J , " . 

Corresponding to the llneanzed map (1.17) we have the normal form I-I2 of the quadratic part H2 
of the initial Hamiltonian (1.1) 

1 2 P21) + ~02(Q2+ P2) H* = ~ I ( Q I  + 1 2 2 (1.20) 

Non-linear normalization of the map. Non-linear normalization is more conveniently done in complex 
variables. We apply a univalent canonical transformation Q1, Q2, P1, P2 --~ Xl, x2, yl, y2 to (1.17), where 

l + i ,  1 - i  
QJ= ' - ' 2  "-txj+yj) '  PJ- 2 (x j -y j ) ;  j =  1,2 (1.21) 

where i is the square root of -1. 
In complex variables xj, yj the map (1.17) becomes 

(1) = I (°) OZ3 
xj ~j(xj  .a (o) 

cty j 

2 02Z3 0Z3 OZ4 I 
- - - +  X ~ ( o ) 0 7 , o ) -  0y~O)-t-O4 

l = 1 oyj l Yl 

(l) OZ3 
yJ = eJ+2(y  

2 2  / 
0 g 3 0 l  3 024 -I- )_.2. {0). (0)T753+V~ o4; 

l= l°xj  ox I oy t oxj 
j = l , 2  

(1.22) 
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where 

i2~5j -i2~(3j 
~j = e , ~j+2 = e ; j = 1,2 (1.23) 

are the roots of the characteristic equation (1.12), and 

, 1 2 I ( O F ~ / 2  (OF~12 OF~ OF~I 
Z 3 = F~, Z 4 = F* + a Z L~oxSO)) -~oySO)) + 2 ~ - 7 7 ) ~  

j = 1 OXj ayj j 
(1.24) 

where F~ (k = 1, 2) are the forms F k defined by (1.18) and (1.19) in which Q}O) and p}0) have been 
expressed in terms of x} °) and yS0) by formulae (1.21). The forms Zk in relations (1.24) will be written 
as sums 

v v g /~ 
(0)~ (0) 2 (0) ~ (0) 2 

Zk = 2-*Zv1v2glg2Xl X2 Yl 22 ; k = 3, 4 

where the summation is carried out over non-negative integers v], 1)2, lLt 1 and ~£2 that add up to k (and 
similarly in what follows, when analogous representations are used for forms). 

Normalization of the map (1.22) in second-degree terms. We replace the variables xj, yj (j = 1, 2) by 
new variables {j, qj (j = 1, 2), using the generating function R(xl, x2, ql, q2) defined by 

VI V 2 ~t I ~12 
R = Xlqql+X2TI2+R3+R4+. . . ;  Rs = 2 ~ r v , v 2 u l u 2 X l  x 2 ] ] l  I"12 (1.25) 

The equalities 

~R ~R 
YJ = Ox---j' {j = ~ j ;  j =  1,2 

yield explicit expressions for the old variables in terms of the new ones 

• 0 R  3 ~ ~2R3  OR 3 0 R  4 

a n  3 L O2R3 a n  3 O R  4 

yj = rlj + ~ -t~__'l O~j~lOq'-'-Tl + ~ + O4; j = l , 2  

(1.26) 

where R k are the functions in (1.25), with the variables xj replaced by ~j. 
Using equalities (1.26), we exoress x(1), v(1) and x(°). v(°) in terms of ~0). n (1) and E(0) n (0) rom~,-ti,,ok, and 

r J JJ  J ' - ' J  "~j ' , j  -ai ' ' l i  , - ~ l - "  . . . . . . .  J , ~ * * ~  
substitute them into relations (1.22). Solving the equations thus obtained for ~}1) and I1} 1), we obtain 
the map in the new variables 

/ / ~(1) ( 0 )  OW..__~3 _ (1 )  = ~ j + 2 / q ~ O  ) + _ _  + ; j = 1, 2 (1.27) 
oJ = e J  an o + . . . .  uj ) 

where the dots stand for the terms of power greater than two in ~0), "~2~:(O),'ll~n (0) and ~(2 °), and 

.,(0) ~(o) (o) (0)) R t~(0) #o) 0(0) n(o), 
W3 -= Z 3 ( ~ l  , ~2 , I l l  , 1"12 -t- 3~,~1 , "-a2 , I l l  , '12 ) - 

~, tc~ ~(0) n ~(0) ~ _ (0 )  (0)~ 
-"3t¢1",l ,¢2",2 ,~3ql ,~4q2 J 

(1.28) 

The function R 3 is chosen in such a way as to simplify (or even to eliminate) the second degree terms 
in (1.27) as far as possible. 
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We write I413 as a sum 

v v~ g g9 
X-" e(0) le(0) " (0) 1 (0) " 

W3 = 2_~Wv~v2~2~l g2 II1 q2 

Equations (1.23) and (1.28) imply the following expressions for the coefficients 

1 i2g/vlv2~tl~t2"~ 
WVIV2~,[.I.2 = ZVlV2~.[I[J.2"I" - e  )rv,v2~t,~h; /v,vzg,g2=(Vl-Pl)Ol+(V2-[.I-2)152 (1.29) 

In the interior of the stable domain (1.13) of the linearized map, there can be no resonances of up 
to and including two. Let us assume that there are also no third-order resonances, i.e. that there can 
be no equality 

k1151 + k215 2 = n (1.30) 

where n is an arbitrary integer, and kl and k 2 a r e  integers such that [ kl [ + ] k2 [ = 3. Then the number 
/v~v2~t,g2 in (1.29) will not be an integer and, putting 

Z v i v 2 ~ t l g  2 
- ( 1 . 3 1 )  

rVl  V2gl g2 i2X/VlV21tlg 2 
e - 1  

we get w~v~g~ = 0. Then W3 = 0, and there will be no second degree terms in the normalized map 
(1.27). 

Now suppose that there is one third-order resonance in the system. We shall consider not arbitrary 
resonances, but only resonances for which the numbers kl and k2 in (1.30) satisfy the inequality klk2 > O. 
Only such resonances may cause a system that is stable in the first approximation to become unstable 
in the non-linear approximation [9]. Thus, we shall assume that one of the following four resonance 
relations holds in the system 

1) 3o I = n, 2) 3152 = n, 3) 151 + 2132 = n, 4 )  2151 + 132 = n (1.32) 

Then the two monomials in W3 for which lvlv2plgZ equals n or -n cannot be made to vanish. The map 
normalized in second-degree terms will be defined by equalities (1.26) in which 

k I k 2 k 1 k 2 ~(o) ~(o) ~(o) ~(o) 
W3 = Zklk200~l ~2 + ZOOklk21[1 q2 (1.33) 

Normalization of  the map in third-degree terms. Suppose that there are no third-order resonances. 
Choosing the coefficients of the form R 3 according to formula (1.31), we eliminate all second-degree 
terms in the map (1.27). Calculations show that with this choice of R3 the map may be written as 

~W 4 ) ~(1) = ~j(~O) ~W4 04 TI,1) ~j+2(11~0)+ + 0 4  ; 
-~J OT[~ O) + ' = 0 ~  

j = 1,2 (1.34) 

2 ~7 (r -(0) ! :(0) _(0) _(0),-~n ,~(0) ~(0) ~(0) _(0)) 
W4 = Z4(~] 0), ~2 l:(0), I~1-(°), 112-(°)")"r' E v~"3',~l , ~rl~ 0)'~2 , Ill , I[2 )°/x31,%1 , 0 ~  0)~a2 , Hi , 112 

j= l  
.~(0) +R4(~ l ,~°),  (0) _(0)) _ . ~(0) ,(0) (0) q l ' 112 --K4(~l~l '~2~2 '~3ql  '~4TI~ 0)) 

+ 
(1.35) 

Suppose there are no fourth-order resonances in the system. One might try to choose the form R 4 
so as to eliminate the third-degree terms in the map (1.34). However, this cannot be done. As is obvious 
from expressions (1.29), the terms in W4 for which vl = gl, v2 = ~2 cannot be eliminated. The map 
normalized in third-degree terms may be written as equalities (1.34) in which 

~(0) 2 (0) 2 ~ ( 0 ) ~ ( 0 ) _ ( 0 ) _ ( 0 )  ~(0)z~ (0)2 
W4 = w2020~1 1"11 + WllllC~l ca2 II1 I12 + w0202t~2 '12 (1.36) 
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The coefficients of the form (1.36) are real numbers. They are expressed in terms of the coefficients 
of the forms F3 and F4 from (1.18) and (1.19) by formulae (3.7)-(3.9) of Section 3. 

Now suppose that there is a fourth-order resonance in the system, that is, equality (1.30) holds with 
]k l l  -t- ]k2] --- 4. As in the case of third-order resonance, we will confine our attention to single 
resonances, and only to those for which the numbers kl and k2 are non-negative. The following five 
such resonances are possible 

1) 4o  1 = n, 2) 402 = n, 3) 2(o 1 + 02)  =/ ' / ,  4) (Yl + 302 = n, 5) 3o 1 + 02 = n (1.37) 

For each of these resonances, the form W4 in the normalized map (1.34) will contain, apart from 
non-vanishing monomials of the form (1.36), also two monomials characteristic for that specific resonance 

2 2 0 2 0 2 ~.(o) (o) ~(o)~.(o) (o)1](o) ( ) ( ) 
W4 = w2020gl YIl + Wll l l%l  g2 1"11 2 + w0202~2 112 + 

~(O?l (0) k2 q q + w ~(o) ~(o) 
+ Wk]k200~l ~2 OOklk2'l 1 112 

(1.38) 

The last (resonant) coefficients in the form (1.38) are complex conjugates 

Wklk200 = ~klk20 O -  iVklk200, WOOklk2 = ~klk200 + iVklk200 (1.39) 

Expressions for the quantities gk,k200 and Vklk200 are given in Section 3 (formulae (3.10)-(3.19)). 

The normal form of  the Hamiltonian. Given the normal form of the map, it is now quite easy to construct 
a 2re-periodic function of t, F({1, ~2, Vll, q2, t), which is the normal form of the original Hamiltonian 
(1.1). If there are no resonances of order up to and including four, then 

1 . , .-2 2 2 2 
F = io ' l~lTI1 + io2~2112 - ~-~(w2020gll] l  + W l l l l ~ l ~ 2 q l l ] 2  + W0202~2q2 ) + 0 5 (1.40) 

where 05 are the terms of degree greater than four in ~j, rlj, and w0202 , Wl111 and w0202 are coefficients 
of the form (1.36). 

If there is a single third-order resonance (see Eqs (1.30) and (1.32)), then 

1 -int kl k2 int kl k2. 
F = ierl~]q l+iO2~2q2--~g(zklkz00e ~l ~2 +Zooklk2 e q l r 1 2 ) + 0 4  (1 .41)  

where Zklk2OO and z00<k2 are coefficients of the form (1.33). 
If there are no third-order resonances but there is a single fourth-order resonance (see Eqs (1.30) 

and (1.37)), then 

1 ~ '~ 2 2 
F = iOI~ITI1 + i(Y2~2112 -- ~'~(W2020~71]1 + WIt l I~I~2TllTI2 + W0202~2~2 + 

-int)zkl)zk2 intT]kl k2 
+ Wkjk200 e "~1 "~2 + WOOk~k2 e I 112 ) + 05  

(1.42) 

where Wvlv2~1~2 are coefficients of the form (1.38). 
In real canonically conjugate variables z), q0j (j = 1, 2), defined by a univalent canonical transformation 

~j 1 + i ~ i(pj 1 + i ~ -i% 
-- ~ dz r j e  , rlj = ~ 4z r j e  ; i =  1,2 (1.43) 

the normalized Hamiltonians (1.30), (1.41), (1.42) become, respectively 

2 
H = o l r  I + 0 2 r  2 + c20r I + c l l r l r  2 + c02r2 + O ( ( r  I + r2) 5/2) (1.44) 

4 / 2  kl/2 k j2  
H = 01r 1 + 02r 2 + ~--~r I r 2 (0~k,k200siny + ~klk200COS~') + O ( ( q  + r2) 2) (1.45) 
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2 2 kll2 k212 • 
H = ~ l r l  + ( J 2 r 2 + c 2 0 r l  + C l l r l r 2 + c o 2 r 2 + r  I r 2 (~kjk200Sln~/+ 

+ ~k,~2ooCOS]/) + O((r 1 + r2) 5/2) 
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(1.46) 

1 1 1 
c20 = ~w2020, Ctl = ~--~w1111, c02 = ~-~w0202 (1.47) 

1 1 
O~klk200 = ~Vklk200, ~klk200 ~" ~-[klk200, ~/ = klq01 + k 2 ( P 2 - n t  (1.48) 

2. T H E  S T A B I L I T Y  OF T H E  R E L A T I V E  E Q U I L I B R I U M  OF A R I G I D  
B O D Y  U N D E R  O S C I L L A T I O N S  OF ITS S U S P E N S I O N  P O I N T  

Consider a rigid body moving in a uniform field of gravity. Let O , X , Y , Z ,  be a fixed system of coordinates 
whose O , Z ,  axis points vertically upwards. Suppose one point O of the body is moving along the vertical 
O , Z ,  according to a harmonic law O , O  -- -acos(f2t) (a > 0). Let mg be the weight of the body and 
let ! be the radius vector of the centre of gravity relative to the point O. Let Oxyz be a system of 
coordinates moving with the body, its axes directed along the principal axes of inertia of the body for 
the point O. The moments of inertia areA, B and C. One further system of coordinates OXYZ is moving 
linearly with its axes parallel to the corresponding axes of the system O , X , Y , Z , .  

When the body's centre of gravity lies on the vertical O , Z , ,  it has two relative equilibrium positions 
(in the system OXYZ). One corresponds to the normal position of the body (with the centre of gravity 
below the point O), and the other to the inverted position (with the centre of gravity above O). We will 
investigate the problem of the stability of these equilibrium positions of the body. Let us assume that 
the body has the mass geometry of a Kovalevskaya top. Then A = B = 2C, and the centre of gravity 
may be assumed to lie on the Ox aEls. 

The Hamiltonian. The mutual orientation of the trihedrals Oxyz and OXYZ will be defined in terms 
of the Euler angles % 0, %. Let v0 be the velocity of the point O of the body, and letp, q and r be the 
components of the angular velocity vector of the body in the system of coordinates Oxyz. The kinetic 
and potential energy are given by the formulae 

1 2 1 2 T = gmx) o + m(Vo, Io x l) + gC(2p + 2q 2 + r2), I-I = mglsinOsinq~ 
L 

Dropping terms independent of ~, 0, q~ and their derivatives with respect to time, we obtain the 
following expression for the Lagrangian L = T - rI 

1 L = C(~t2sin20 + 02) + ~C(l~/cos0 + (p)2 -I- ma~Isin(f~t)((psinOcoscp + 

+ 0 cos0 sinqo) - mglsinOsinff~ 
(2.1) 

The generalized momenta are evaluated in the usual way 

~L ~L 0L 
Pv = ~ '  Po = ~ ,  P~ = ~-~ (2.2) 

The coordinate ~t is cyclic, and thereforepv = const; we shall assume tha tpv  = 0. Then, using Eqs 
(2.1) and (2.2), we obtain the Hamiltonian H = H(0, % P0, P~, t) in the standard way. Introducing a 
dimensionless "time" variable ~ = ~t ,  we transform to new coordinates and momenta qj and pj 
(j = 1, 2) by applying the canonical transformation (of valence (C~) q)  

3 
~p = ~n+q 1, 0 = ~ + q 2  

(2.3) 
P~ = Cf2Pl + ma~lsin'csinql, Po = C~p2 + ma~lsin'csinq2 
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In the new variables, the Hamiltonian will be 

H = ~(Pl + 213sinT:sinqlsin 2q22 2 - ~ - )  (tg q 2 + 2 ) +  

l (  2ql~ 2 
+ ~ P2 + 213sin'csinq2sin ~-) - czc°sqlc°sq2 - 13c°s~(c°sql + c°sq2) 

(2.4) 

where we have introduced the dimensionless parameters 

mal 
o~ = mgl 13 = 

C~'22' C 

The Hamiltonian of the perturbed motion. The equations of motion with Hamiltonian (2.4) admit of 
two particular solutions: q1 = q2 = Pl = P2 = 0 and ql = re, q2 = Pl  = P2 = 0, corresponding to the 
normal and inverted positions of relative equilibrium. The Hamiltonian of the perturbed motion for 
the normal equilibrium position is the Hamiltonian (2.4) itself. Its expansion in powers of qj andpj has 
the form (omitting terms independent of qj andpj) 

H = H 2 + H 4 + . . .  (2.5) 

l 2 1 2 1 2 
H 2 : }p~ + ~(a  + 13cos'C)q I + ~.P2 + ~(0t + 13cosx)q 2 (2.6) 

~4 4) 1 2. 2 2 1 . 
H 4 = -  (o~+13cos ' c ) (q41+q2  +3q2(pl-o~ql)+313sln~qlqz(qlP2+2q2P1) (2.7) 

For the inverted equilibrium position we introduce perturbations qj andpj  by making the following 
canonical change of variables 

' ' ' p '  2 1 3 "  " ' ql = rc + ql, q2 = q2, Pl = Pl, P2 = 2 -  sm'~smq2 

Replacing "c by ~ + zt in the corresponding Hamiltonian of perturbed motion, changing the sign of 
the parameter a and omitting the primes in the notation of the variables qj and pj' we obtain the 
Hamiltonian (2.4). To analyse the stability of the relative equilibrium positions of the body, therefore, 
we can take (2.4) as the Hamiltonian of perturbed motion, assuming that 13 >_ 0 and c~ is of arbitrary 
sign. As a result of the analysis, the half-plane 13 >_ 0 is divided into stable and unstable domains. Those 
of them for which a _ 0, 13 _> 0 will be stable and unstable domains of the normal equilibrium position. 
The domains for which ~z < 0, 13 _> 0, after mirror reflection in the axis (x = 0, will define the stable and 
unstable domains of the inverted equilibrium position. 

The results of a stability analysis. 
The linear problem. In the first approximation, the equations of perturbed motion for the pairs of 

canonically conjugate variables ql,Pa and q2,P2 are separated. The characteristic equation (1.12) takes 
the form 

(~2-2AI~ + 1)(1~2- 2A21~+ 1)= 0 

1 1 
A 1 = ~ ( X l l ( 2 r t )  + x33(27I)) ,  A 2 = ~(x22(27t)  + x44(27~)) 

The stable and unstable domains in the plane of the parameters c~ and 13 are obtained by applying 
the two Ince-Strutt diagrams for the Mathieu equation [10]. 

The stable domains in the first approximation are given by the system of inequalities IA~I < 1, 
IA21 < 1. If at least one of these inequalities holds with the opposite sign, the system is unstable. 

In what follows, in order to avoid dealing with a denumerable set of stable and unstable domains in 
the half-plane 13 _> 0 of admissible parameter values, we will confine ourselves to the part of the half- 
plane defined by the inequalities ~ < 2, 0 < 13 < 10. With these parameter values four stable domains 
exist in the first approximation. They are the sets of interior points of triangles gs (s = 1, . . . ,  4) whose 
bases are the segments [0, 1/4], [1/4, 1/2], [1/2, 1], [1, 2] of the axis 13 = 0. The vertices Qs of the triangles 
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opposite the bases are Q1(-0.0851, 0.5942), Q2(0.3687, 0.2547), Q3(0.9216, 0.9776), Q4(1.7924, 2.2558) 
(see Fig. 1). The left and right curvilinear boundaries of the triangles gs are defined by the equations 
a = a!ri(~) and a = a!r)([3), respectively. For small 13 

1 2 a{r) 1 1 + O(133), (t) 1 1 a(1 t) = --~.1~ + 0(]34), = ~--"~13 a2 = ~.+ ~13+ 0(133 ) 

04r) 1 1  a~l) 1 1 = ~. - ~13 + 0(133),  = ~ + $13 + 0(133) 

a~ r) -- 1 - 1 ~ 2 - 1 -  0 (~4) ,  a l  1) = 1 + 5 ~ 2 +  0(134), alr) g_1132 .1  - 0 ( ~  4) 

For values of ot and 13 that satisfy the inequalities a < 2, 0 _< 13 < 10 and lie outside the domains & 
(s = 1, . . . ,  4), one has instability in the strictly non-linear formulation of the problem. 

The normal form of the quadratic part (2.6) of the Hamiltonian of perturbed motion has the form 
(1.20). If [3 = 0, we have (71 = Q'-~, (Y2 = ~,/a/2. Using the continuity of the characteristic exponents, 
one can derive formulae to compute first approximations of the quantities 61 and (72 in the stability 
domains &. Putting cj = (2n)-larccosAj (j = 1, 2), we obtain (71 = Cl, (72 = C2 in gl, (71 = 1 - q ,  
(72 = c2 ing2, ~1 = 1 -Cl,  cY2 = 1 -c2  ing3, and (71 = 1 + Cl, (72 = 1 -c2  ing4. 

The non-linearproblem. The third-order resonances in the problem of the stability of equilibrium of 
the body have turned out to be unimportant, since expansion (2.5) contains no third-degree form H3. 
It is obvious from the structure of the forms (2.6) and (2.7) that those of the fourth-order resonances 
(1.30) in which the numbers kl and k2 are odd are also unimportant. Computations have shown that 
the fourth-order resonances (1.30) in which the numbers kl and k2 have different signs are not realized 
in the stable domains considered here in the first approximation; when kl and k2 have the same sign, 
only nine resonances are possible: 

1) 4(71 = 1, 2) 2((71+(72) = 1, 3) 4(72 = 1, 4) 2((71+(72) = 2, 5) 4(71 = 3 

6) 2((71+(72) = 3, 7) 4(72 = 3, 8) 2((7 l+(72) = 4, 9) 4(71 = 5 (2.8) 

Correspondingto each of theresonancere la t ions(2 .8) in the  a, 13 p lane there i sacurve issu ingf fom 
a point(am, O) on the 13 =Oaxis,  where 

a I = 0.0625, a 2 = 0.0858, a 3 = 0.1250, a 4 = 0.3431, a S = 0.5625 

a 6 = 0.7721, a 7 = 1.1250, a 8 = 1.3726, a 9 = 1.5625 

The resonance curves are shown in Fig. 1. There are three resonance curves 1-3 in the domain gl, 
one curve 4 in g2, two  curves 5, 6 in g3, and three curves 7-9 in g4. 

Off the resonance curves (2.8), the Hamiltonian of perturbed motion (2.5) has the normal form (1.44). 
If 

2 
D = cll - 4c20c02 ;~ 0 (2.9) 

then the equilibrium position in question is stable for most initial conditions (in the sense of Lebesgue 
measure) [4, 11]. In addition, if the function 

2 2 (2.10)  F ( r l ,  r2) = c20r I + c l l r l r 2  + c02r2 

is of fixed sign for q > 0, r 2 -> 0, the equilibrium position is formally stable [4, 9, 12]. 
For fourth-order resonance, the normalized Hamiltonian has the form (1.46). If 

kJ2 k212 I 2 2 
I f ( k ,  k2) t > k, k z ,,/%k=O0 + D<k=00 (2.11) 

the equilibrium position is stable in the third approximation (that is, including terms up to H4 inclusive 
in expansion (2.5)). In the case of the opposite inequality, the equilibrium position is unstable in 
Lyapunov's sense [4]. 
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Fig. 1 

Computations based on the algorithm of Section i have shown that, for values of the parameters 
and ~l off the curves (2.8) in the stability domains in the first approximation, D is negative. For such 
parameter values, therefore, the relative equilibrium position of the body is stable for most initial 
conditions, and it is also formally stable. 

On all the resonance curves (2.8) except for the curve 2(131 + O"2) ----- 2 one has inequality (2.11), and 
on these curves, therefore, one has stability in the third approximation. As to the curve 2(132 + 132) = 2 
itself, it is divided by the point Q,(0.3622, 0.2161) into stable and unstable segments (see the upper 
left insert in Fig. 1). On the P4Q, segment one has stability in the third approximation, and on the Q,Q2 
segment the relative equilibrium of the body is unstable in Lyapunov's sense. 

3. C O M P U T A T I O N A L  F O R M U L A E  

This section presents formulae for computing the coefficients of the normal forms (1.44)-(1.46). For 
the forms F k and F~ (k = 3, 4), defined by (1.18), (1.19) and (1.24), we introduce the notation 

v I V~ Jl I ~/2 V V ~1 g X-' ~" ,q(o) ,q(o) -o(o) p(O) , ~ ~ ,  ( 0 )  1 ( 0 )  2 ( 0 )  i ( 0 )  2 

Fk = Z_,Jv~v2~2~Zl ~,:~2 11 2 ' Fk = 2.,)'v~v2~t,~t2Xl X2 Yl Y2 (3.1) 

For the form F~ we have fv:v2~l>_ = Zvlw_~lg2, and the following relations hold 

f ,  1 - i  , = _1 i . 
v'v2gl~t2 -- 4- (avlv2Pq~a2 + ibvlv2glg2)' f~lg2vtv2 4 (av'v2PIg2 - lbv'v2~'~a2) (3.2) 

(a3000 = f3000 - f l o 2 0 ) ,  ( b 3 0 0 0  = f 2 0 1 0  - fo030), (a21oo = f2100 - f t o l l  - fo120) 

(b2100 --" f2001 + f l l l O -  foo21), (a2010 = f1020 + 3f3000), (b2010 = f2010 + 3f0030) 

(alllO = 2(f2100 + f0120)), (blllO = 2(f2001 + fo021)) (3.3) 

a2001 = f2100 + f lOl l  - fol20, b2001 = fo021 + f l l l O -  f2001 

a lo02 = f1200 - f lo02 + f o i l  l, blo02 = f0210 - f l lOl  - fool2 

From this point on, an equality enclosed in parentheses means that, apart from the equality itself, 
any equality obtained by simultaneous permutation of the first two and last two subscripts also holds. 
For example, besides the first equality of (3.3), we have the equality a0300 = f0300 -f0102. 

The coefficients f~02o, f~111 and f~202 of the form F~ are real 

( * 
f2020 = - (3 f4000  + f2020 + 3f0040) /2) ,  f~ l l l  = - ( f2200 + f2002 + f0220 + f0022) (3.4) 
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The remaining coefficients of the form F~ needed for normalization are pairs of  complex conjugates 

1 , 1 
fv~v2g~g2 = ~(avtv~qrt ~ + ibv,v~h~t~), fg~p-Tvlv2 = ~ ( a v l v z g , g  2 -- ibv~v=rq~t :) 

where 

(a4000 = f2020 - f4000 - fo040) ,  (b4000 = f1030 - f301o)  

(a1300 = f0211 + f1102 - f1300 - f0013) ,  (b1300 = f o i l 2  + f l o 0 3  - f1201 - f0310) 

a22oo = f~1~1 - f2200 + f e o o z - f o o = 2  + f0220,  b=200 -- f~012 - f~2~o + fm2~  - f2101 

(3.5) 

The function W4 defined by (1.35) may be written as a sum 

v v g g 
~ ( 0 )  I t ( o  ) 2 _ _ ( 0 )  1 ~ ( 0 )  2 

W4 = 2,.~wvlv~g~gzC~l ~2 q l  q2 (3.6) 

and we introduce the following notat ion 

~+ 2 4" r2  
Cvtv21xtg 2 = av~v2glg2bvlv21ttlg2, CVIV2I-~II-t 2 = aviv2gltt2-oVlV21J.iP.2 

+ 

- = a m m n n  b r r s s  + a r r s s b m m n n  C m l m 2 n l n 2 F I g 2 s I S 2  I 2 I 2 1 2 I 2 -  1 2 1 2 1 2 I 2 

^ +  

Cmlm2nln2rlr2sls2 = amtm2njn2arlr2sls2 4. bmxm~nln2brlr2sls2 

Relations (1.35), (1.23), (1.24), (1.31) and (3.1)-(3.5) yield the following expressions for the coefficients 
of the function (1.36) 

, 1 - - 1 -+ 
W2020 = f2020 4" g (4C2olo + 3 C20103000 4" C20012100 + C1110) -- i-6 { 3 ctg (n61)C2010 + 

~ +  ~ +  ~ +  ~ +  

4. ~2)]C2100 -- ~2)C2001 ] + ctg (nr~2)clllo + 9 ctg (3rtr~ 1)c3ooo + ctg [rt(2r~ 1 - ctg [rt(2r~ 1 

(3.7) 

-- "t- + + -- 
w1111 = f'111 + ~(Cloo211m + cll lOZOm + c0201~110 + CHOI2010 + C11102100 + c11011200) -- 

l ^ +  ^ +  ~ +  
- ~{ ctgUt~t)czolm lOl + ctg(r~°z)C11100201 + ctg[n(261 + ~2)]c2100 + (3.8) 

~ +  ~ +  ~ +  

_ _ 2(Y2)]C1002 } + c tg[n(o  I + 2(Y2)]C1200 + ctg[~(2r~ 1 - r~2)]c2001 ctg[~(r~l 

l -- + 1 ~ +  
W02o2 = f~202 + ~(4c0201 + 3%2010300 + c12001002 + cllOl) - ]'~{ 3 ctg(r~O2)C0201 + 

- +  ~ +  ~ +  ~ +  

+ ctg(rccYl)cllol + 9ctg(3rtOe)Co3oo + ctg[n0Jl  + 2~2)]C12oo + ctg [rc(ol - 2c2)]Cloo2 } 

(3.9) 

For the real and imaginary parts of the resonance coefficients (1.39) we have the following expressions 

l 1 
]-14000 = ~a4000 + ~-~(9C3ooo + c2100 - £2010 - c2001) + 

1 ^ -  + 
+ ~-~ { 3 ctg ( ~ 1 )  C3ooo2olo c t g  [7~(2~  1 -- ~ 2 ) ]  C21002001 } 

(3.10) 

V4000 = _ ~b4ooo + 1 . . . . . . . .  ~'~ (9c300o + £2100 - c2010 - c2001) - 

1 + + 
16 { 3 c tg (no  I )C2mo3o00 + ctg [rt(2o 1 - ~J2)]c20012100 } 

(3.11) 
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l 1 
~t04OO = ~ a 0 4 o o +  (9c03oo+Cl2oo+Cloo2-c0201)+ 

(3.12) 
+ l{3ctg(rcc2)`}o3ooO2Ol c tg[g(cy 1 _ _ 2~2)]Cloo212oo } 

1 1 . . . . . .  
Vo4oo = -3bo40o + (9Co3oo 4" 6"1200 -- Cloo2 -- C0201 ) -- 

(3.13) 1 + 
1~5{ 3 ctg(rtc2)Co2ozo3oo - c t g [ n ( ~  1 - 2c2)]C~oo212oo } 

1 1 + + 
g2200 = ~a22oo + , v  [4(c21oo + clzoo) + 3(c12°°3oo° + c°3oo21°°) - Clll° - Cll°l + 

+ 

+ C2olOlOO2 - C2omo2o I ] + [ctg ( ~ 1 ) ( 2 C i l m  12oo + `}12o02010) + (3.14) 

+ ctg 0t~2)(2`}illO21oo + c21ooo2m) - 3 ^+ ^- ctg (3rc61)C3ooolo02 - 3ctg(3r~cy2)co3oo2ool ] 

1 1 
V2200 = -~b2200 + ~-~ [6(`}12003000 + `}03002100) + 4(c2100 + Cl2oo) - 

^+ . . . . .  ~ + + 
- 2(c20t01002 + `}02012001) - C l l O l  - C l 1 1 0 ]  - . v  [ c t g ( g o 1 ) ( 2 c l l ° l l 2 ° °  + ¢12002010) + (3.15) 

+ + -- + 
+ ctg ( ~ 2 ) ( 2 C n l o 2 1 o  o + c21ooo2m) - 3 ctg (3r~o I )Cloo23ooo- 3 ctg (3~2)Co3oo2ool ] 

1 1 + + + 
~ll3oo = ~a13oo + ]-~(6Cl2ooo3oo + 2C21oo12oo - Co2o111Ol + c111OlOO2) + 

(3.16) 
l ^4- ^4- 

+ ]-~ [3 ctg (nO l)co3ool 1Ol + ctg (/I;(J2) (2`}12OO0201 "1- ̀ };2001110) + 2 ctg (5g(32)Cloo22100 ] 

1 1 ^- ^+ 
v 1300 = - ~ b  1300 + ~ (6c03001200 + 2`}12002100 - c10021110- c02011101 ) - 

(3.17) 

ctg(nol)Co3oollOl + ctg(n~J2)(2C12ooo2m + Q2ooulo) - 2ctg(5~:cY2)c21oolOO2] 1 [ 3  + 4- + 

1 1 + + 4- + 
~.13100 = ~.a31OO + T '~ ( 6c21oo3ooo  + 2c12oo2wo - c2mmu o - c i l o 1 2 o o l  ) + 

(3.18) l ^ -  
+ i-6 [3 ctg (g62)c3oom 11o + ctg (/~CY 1 ) (2`}21oO2OlO + `}21ootlOl) + 2 ctg ( 5 r ~  1 )`}12oo2ool] 

1 1 ^- 
V3100 = -4.b3100 + ]--~(6c3oo02100 + 2'}12002100- `}20101110- `}11012001)- 

(3.19) 
l + + + + 

1-6 [ 3 ctg (g~2)c3oool no + ctg (~(Yl)(2C21oo2olo + C21ool lol ) + 2 ctg (5ruJ 1 )C2o m 12oo] 

This  r e s e a r c h  was  s u p p o r t e d  f inancia l ly  by  the  R uss i an  F o u n d a t i o n  fo r  Bas ic  R e s e a r c h  (05-01-0386)  
and  the  "S t a t e  S u p p o r t  for  L e a d i n g  Scient i f ic  Schoo l s "  p r o g r a m m e  (NSh-1477.2003.1) .  
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